95 research outputs found

    Non-linear axisymmetric pulsations of rotating relativistic stars in the conformal flatness approximation

    Full text link
    We study non-linear axisymmetric pulsations of rotating relativistic stars using a general relativistic hydrodynamics code under the assumption of a conformal flatness. We compare our results to previous simulations where the spacetime dynamics was neglected. The pulsations are studied along various sequences of both uniformly and differentially rotating relativistic polytropes with index N = 1. We identify several modes, including the lowest-order l = 0, 2, and 4 axisymmetric modes, as well as several axisymmetric inertial modes. Differential rotation significantly lowers mode frequencies, increasing prospects for detection by current gravitational wave interferometers. We observe an extended avoided crossing between the l = 0 and l = 4 first overtones, which is important for correctly identifying mode frequencies in case of detection. For uniformly rotating stars near the mass-shedding limit, we confirm the existence of the mass-shedding-induced damping of pulsations, though the effect is not as strong as in the Cowling approximation. We also investigate non-linear harmonics of the linear modes and notice that rotation changes the pulsation frequencies in a way that would allow for various parametric instabilities between two or three modes to take place. We assess the detectability of each obtained mode by current gravitational wave detectors and outline how the empirical relations that have been constructed for gravitational wave asteroseismology could be extended to include the effects of rotation.Comment: 24 pages, 20 figures; minor corrections, added extended discussion and one figure in one subsectio

    A learning approach to the detection of gravitational wave transients

    Get PDF
    We investigate the class of quadratic detectors (i.e., the statistic is a bilinear function of the data) for the detection of poorly modeled gravitational transients of short duration. We point out that all such detection methods are equivalent to passing the signal through a filter bank and linearly combine the output energy. Existing methods for the choice of the filter bank and of the weight parameters rely essentially on the two following ideas: (i) the use of the likelihood function based on a (possibly non-informative) statistical model of the signal and the noise, (ii) the use of Monte-Carlo simulations for the tuning of parametric filters to get the best detection probability keeping fixed the false alarm rate. We propose a third approach according to which the filter bank is "learned" from a set of training data. By-products of this viewpoint are that, contrarily to previous methods, (i) there is no requirement of an explicit description of the probability density function of the data when the signal is present and (ii) the filters we use are non-parametric. The learning procedure may be described as a two step process: first, estimate the mean and covariance of the signal with the training data; second, find the filters which maximize a contrast criterion referred to as deflection between the "noise only" and "signal+noise" hypothesis. The deflection is homogeneous to the signal-to-noise ratio and it uses the quantities estimated at the first step. We apply this original method to the problem of the detection of supernovae core collapses. We use the catalog of waveforms provided recently by Dimmelmeier et al. to train our algorithm. We expect such detector to have better performances on this particular problem provided that the reference signals are reliable.Comment: 22 pages, 4 figure

    Relativistic simulations of the phase-transition-induced collapse of neutron stars

    Full text link
    An increase in the central density of a neutron star may trigger a phase transition from hadronic matter to deconfined quark matter in the core, causing it to collapse to a more compact hybrid-star configuration. We present a study of this, building on previous work by Lin et al. (2006). We follow them in considering a supersonic phase transition and using a simplified equation of state, but our calculations are general relativistic (using 2D simulations in the conformally flat approximation) as compared with their 3D Newtonian treatment. We also improved the treatment of the initial phase transformation, avoiding the introduction of artificial convection. As before, we find that the emitted gravitational-wave spectrum is dominated by the fundamental quasi-radial and quadrupolar pulsation modes but the strain amplitudes are much smaller than suggested previously, which is disappointing for the detection prospects. However, we see significantly smaller damping and observe a nonlinear mode resonance which substantially enhances the emission in some cases. We explain the damping mechanisms operating, giving a different view from the previous work. Finally, we discuss the detectability of the gravitational waves, showing that the signal-to-noise ratio for current or second generation interferometers could be high enough to detect such events in our Galaxy, although third generation detectors would be needed to observe them out to the Virgo cluster, which would be necessary for having a reasonable event rate.Comment: 28 pages, 27 figures. Minor changes to be consistent with published versio

    Exploring the relativistic regime with Newtonian hydrodynamics: An improved effective gravitational potential for supernova simulations

    Full text link
    We investigate the possibility to approximate relativistic effects in hydrodynamical simulations of stellar core collapse and post-bounce evolution by using a modified gravitational potential in an otherwise standard Newtonian hydrodynamic code. Different modifications of the effective relativistic potential introduced by Rampp & Janka (2002) are discussed. Corresponding hydrostatic solutions are compared with solutions of the TOV equations, and hydrodynamic simulations with two different codes are compared with fully relativistic results. One code is applied for one- and two-dimensional calculations with a simple equation of state, and employs either the modified effective relativistic potential in a Newtonian framework or solves the general relativistic field equations under the assumption of the conformal flatness condition (CFC) for the three-metric. The second code allows for full-scale supernova runs including a microphysical equation of state and neutrino transport based on the solution of the Boltzmann equation and its moments equations. We present prescriptions for the effective relativistic potential for self-gravitating fluids to be used in Newtonian codes, which produce excellent agreement with fully relativistic solutions in spherical symmetry, leading to significant improvements compared to previously published approximations. Moreover, they also approximate qualitatively well relativistic solutions for models with rotation.Comment: 20 pages, 13 figures; corrected minor inaccuracies and added two subsection

    Relativistic simulations of rotational core collapse : II. Collapse dynamics and gravitational radiation

    Get PDF
    We have performed hydrodynamic simulations of relativistic rotational supernova core collapse in axisymmetry and have computed the gravitational radiation emitted by such an event. The Einstein equations are formulated using the conformally flat metric approximation, and the corresponding hydrodynamic equations are written as a first-order flux-conservative hyperbolic system. Details of the methodology and of the numerical code have been given in an accompanying paper. We have simulated the evolution of 26 models in both Newtonian and relativistic gravity. The initial configurations are di erentially rotating relativistic 4=3-polytropes in equilibrium which have a central density of 10^10 g cm^−3. Collapse is initiated by decreasing the adiabatic index to some prescribed fixed value. The equation of state consists of a polytropic and a thermal part for a more realistic treatment of shock waves. Any microphysics like electron capture and neutrino transport is neglected. Our simulations show that the three di erent types of rotational supernova core collapse and gravitational waveforms identified in previous Newtonian simulations (regular collapse, multiple bounce collapse, and rapid collapse) are also present in relativistic gravity. However, rotational core collapse with multiple bounces is only possible in a much narrower parameter range in relativistic gravity. The relativistic models cover almost the same range of gravitational wave amplitudes (4x10^−21 <= h^TT 3x10^−20 for a source at a distance of 10 kpc) and frequencies (60 Hz <= ν <= 1000 Hz) as the corresponding Newtonian ones. Averaged over all models, the total energy radiated in the form of gravitational waves is 8.2 10^−8 Moc^2 in the relativistic case, and 3.6 10^−8 Moc^2 in the Newtonian case. For all collapse models that are of the same type in both Newtonian and relativistic gravity, the gravitational wave signal is of lower amplitude. If the collapse type changes, either weaker or stronger signals are found in the relativistic case. For a given model, relativistic gravity can cause a large increase of the characteristic signal frequency of up to a factor of five, which may have important consequences for the signal detection. Our study implies that the prospects for detection of gravitational wave signals from axisymmetric supernova rotational core collapse do not improve when taking into account relativistic gravity. The gravitational wave signals obtained in our study are within the sensitivity range of the first generation laser interferometer detectors if the source is located within the Local Group. An online catalogue containing the gravitational wave signal amplitudes and spectra of all our models is available at the URL http://www.mpa-garching.mpg.de/Hydro/hydro.html.Font Roda, Jose Antonio, [email protected]

    Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests

    Get PDF
    We describe an axisymmetric general relativistic code for rotational core collapse. The code evolves the coupled system of metric and fluid equations using the ADM 3+1 formalism and a conformally flat metric approximation of the Einstein equations. The relativistic hydrodynamics equations are formulated as a first-order flux-conservative hyperbolic system and are integrated using high-resolution shock-capturing schemes based on Riemann solvers. We assess the quality of the conformally flat metric approximation for relativistic core collapse and present a comprehensive set of tests which the code successfully passed. The tests include relativistic shock tubes, the preservation of the rotation profile and of the equilibrium of rapidly and differentially rotating neutron stars (approximated as rotating polytropes), spherical relativistic core collapse, and the conservation of rest-mass and angular momentum in dynamic spacetimes. The application of the code to relativistic rotational core collapse, with emphasis on the gravitational waveform signature, is presented in an accompanying paper.Comment: 18 pages, 12 figure

    Generic Gravitational Wave Signals from the Collapse of Rotating Stellar Cores

    Get PDF
    We perform general relativistic simulations of stellar core collapse to a proto-neutron star, using a microphysical equation of state as well as an approximate description of deleptonization. We show that for a wide variety of rotation rates and profiles the gravitational wave burst signals from the core bounce are of a generic type, known as Type I in the literature. In our systematic study, using both general relativity and Newtonian gravity, we identify and individually quantify the micro- and macrophysical mechanisms leading to this result, i.e. the effects of rotation, the equation of state, and deleptonization. Such a generic type of signal templates will likely facilitate a more efficient search in current and future gravitational wave detectors of both interferometric and resonant type

    Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects

    Get PDF
    We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (∼10^15 G at the surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification, the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in the Newtonian case, sufficiently strong magnetic fields slow down the core’s rotation and trigger a secular contraction phase to higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and <∼100 kHz denotes the generation of a jet-like hydromagnetic outflow.Aloy Toras, Miguel Angel, [email protected]

    Gravitational waves from relativistic rotational core collapse

    Full text link
    We present results from simulations of axisymmetric relativistic rotational core collapse. The general relativistic hydrodynamic equations are formulated in flux-conservative form and solved using a high-resolution shock-capturing scheme. The Einstein equations are approximated with a conformally flat 3-metric. We use the quadrupole formula to extract waveforms of the gravitational radiation emitted during the collapse. A comparison of our results with those of Newtonian simulations shows that the wave amplitudes agree within 30%. Surprisingly, in some cases, relativistic effects actually diminish the amplitude of the gravitational wave signal. We further find that the parameter range of models suffering multiple coherent bounces due to centrifugal forces is considerably smaller than in Newtonian simulations.Comment: 4 pages, 3 figure
    corecore